DIFERENSIAL / TURUNAN

1 10 2008

PENGERTIAN

Turunan fungsi f(x) untuk tiap nilai x ditentukan dengan rumus :

RUMUS – RUMUS TURUNAN

1.   f(x) = k                                      maka     f′(x) = 0

2.   f(x) = ax maka f′(x) = a

3.   f(x) = ax n maka     f′(x) = an x n-1

4. f(x) = u(x) ± v(x)                      maka f′(x) = u′(x) ± v′(x)

5.   f(x) = (u(x))n maka f′(x) = n ( u(x) )n-1 . u′(x)

6.   f(x) = u(x) . v(x)                       maka f′(x) = u′(x).v(x) + u(x).v′(x)

7.   maka

8.   f(x) = sin u                                maka f ′(x) = cos u . u′

9.   f(x) = cos u                               maka f′(x) = – sin u . u′

10. f(x) = tan u                                maka f′(x) = sec 2 u . u′

11. f(x) = cotan u                            maka f′(x) = – cosec 2 u . u′

12. f(x) = sec u                               maka f′(x) = sec u . tan u . u′

13. f(x) = cosec u                            maka f′(x) = – cosec u . cotan u . u′

14. maka

15. maka

16. f(x) = Ln u                                maka

17. maka

18. maka

Persamaan Garis Singgung Kurva

  • Suatu titik    P(x1,y1)    terletak pada  kurva    y = f(x) ,     maka persamaan garis singgung yang melalui titik itu adalah          y – y1 = m (x – x1)  dengan   m = f′(x1).
  • Dua garis sejajar jika m1 = m2 dan saling tegak lurus jika m1.m2 = -1.

Fungsi naik dan fungsi turun

  • Fungsi f(x) naik jika f′(x) > 0
  • Fungsi f(x) turun jika f′(x) < 0
  • Fungsi f(x) stasioner jika f′(x) = 0

Titik stasioner dan jenis stasioner

  • Jika  f′(a) = 0  maka  x=a disebut pembuat stasioner,  f(a) disebut nilai stasioner dan (a , f(a)) disebut titik stasioner.
  • (a , f(a)) disebut titik balik maksimum jika f′(a) > 0 , f′(a) = 0 , f′(a+) < 0  atau  jika f′(a) = 0  dan f′′(a) < 0.
  • (a , f(a)) disebut titik balik minimum jika   f′(a) < 0 ,   f′(a) = 0 ,   f′(a+) > 0 atau jika f′(a) = 0  dan  f′′(a) > 0.
  • (a , f(a))  disebut titik belok   jika   f′(a) > 0 , f′(a) = 0 , f′(a+) > 0    atau    f′(a) < 0 , f′(a) = 0 ,    f′(a+) < 0   atau  jika    f′(a) = 0  dan    f′′(a) = 0.

Aksi

Information

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s




%d blogger menyukai ini: